

HZYHX-Y 氧化锌避雷器阻性电流测试仪

武汉赫兹电力设备有限公司

地址: 武汉市东西湖区吴北路 225 号孚特工业园

网址: <u>www.whhezi.com</u>

全国统一服务热线: 027-83267669 邮箱: whhezi@163.com

尊敬的顾客:

感谢您购买本公司 HZJB-660C 微机继电保护测试仪。在您初次使用该仪器前,请您详细 地阅读本使用说明书,将可帮助您熟练地使用本仪器。

我们的宗旨是不断地改进和完善公司的产品,因此您所使用的仪器可能与使用说明书有 少许的差别。如果有改动的话,我们会用附页方式告知,敬请谅解!您有不清楚之处,请与 公司售后服务部联络,我们定会满足您的要求。

由于输入输出端子、测试柱等均有可能带电压,您在插拔测试线、电源插座时,会产生 电火花,小心电击,避免触电危险,注意人身安全!

安全要求

请阅读下列安全注意事项,以免人身伤害,并防止本产品或与其相连接的任何其它产品受 到损坏。为了避免可能发生的危险,本产品只可在规定的范围内使用。

为了防止火灾或人身伤害,只有合格的技术人员才可执行维修。

使用适当的电源线。只可使用本产品专用、并且符合本产品规格的电源线。

正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。

产品接地。本产品除通过电源线接地导线接地外,产品外壳的接地柱必须接地。为了防止电击,接地导体必须与地面相连。在与本产品输入或输出终端连接前,应确保本产品已正确接地。

注意所有终端的额定值。为了防止火灾或电击危险,请注意本产品的所有额定值和标记。 在对本产品进行连接之前,请阅读本产品使用说明书,以便进一步了解有关额定值的信息。

请勿在无仪器盖板时操作。如盖板或面板已卸下,请勿操作本产品。

使用适当的保险丝。只可使用符合本产品规定类型和额定值的保险丝。

避免接触裸露电路和带电金属。产品有电时,请勿触摸裸露的接点和部位。

在有可疑的故障时,请勿操作。如怀疑本产品有损坏,请本公司维修人员进行检查,切 勿继续操作。

请勿在潮湿环境下操作。

请勿在易爆环境中操作。

保持产品表面清洁和干燥。

——安全术语

警告:警告字句指出可能造成人身伤亡的状况或做法。

小心:小心字句指出可能造成本产品或其它财产损坏的状况或做法。

地址:武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669

邮箱: whhezi@163.com

1	概述	. 4
2	功能及特点	. 4
3	技术指标	. 5
	3.1 参考电压测量 3.2 电流测量 3.3 电场强度测量 3.4 使用条件及外形	5 5 5 5
4	测量及补偿原理	. 6
	4.1 测量原理 4.2 相间干扰及自动补偿原理	6 6
5	面板及各部件功能介绍	. 7
	5.1 主机面板	7 8
6	操作使用说明	9
	 6.1 智能电量管理. 6.2 打印机使用说明. 6.3 主机操作说明. 6.3.1 主菜单 6.3.2 测试参数设置. 6.3.3 测试数据显示屏幕. 6.3.4 测试数据说明 6.3.5 测试记录查询 6.4 电压采集器操作说明. 6.4.1 测试数据显示屏幕. 6.4.2 主菜单及无线频道设置. 	9 9 10 11 13 14 16 16 16 16 17
7	测试接线	17
	7.1 注意事项 7.2 有线测试方式接线说明 7.3 无线测试方式接线说明 7.4 感应测试方式接线说明	17 18 19 19
8	售后服务	20

1 概述

氧化锌避雷器带电测试仪用于检测氧化锌避雷器(MOA)的各相电气性能。该仪器适用于 各个电压等级的氧化锌避雷器的现场带电检测以及停电状态下试验室做的出厂和验收试验。 通过测量全电流及阻性电流等参数,可以及时发现氧化锌避雷器内部绝缘受潮和阀片老化等 危险缺陷。

2 功能及特点

- 2.1 采用带有 DSP 浮点处理单元的高性能、低功耗 ARM 处理器,运算速度更快、运算精度更高、处理数据量更大;从而可以保证测试数据计算的准确性和稳定性。
- 2.2 高精度采样滤波电路及数字滤波技术,可滤除现场干扰信号。
- 2.3 采用浮点快速傅里叶算法,从而实现对基波、谐波电压、电流信号的高精度分析。
- 2.4 采用工业级 5.7 寸 320×240 点阵单色液晶屏,显示清晰,人机界面友好;对于一些重要的操作及参数设置,显示其提示信息和帮助说明;屏幕顶部状态栏可显示各个外设工作状态及测试状态信息。
- 2.5 可同时测量三相氧化锌避雷器的电气参数,并可自动补偿相间干扰;也可单相测量,支持B相接地的PT二次电压作为参考电压;当被测相与参考电压相别不同时,可自动计算补偿角度。
- 2.6 提供有线、无线测试方式,无线测试方式操作更加简便、灵活;可大大降低现场测试人员工作强度。
- 2.7 特有的感应板替代 PT 二次电压测量技术, 使测量更安全快捷。
- 2.8 提供无 PT 测试方式,可在某些极其特殊的情况下进行应急测试。
- 2.9 电压采集器集成本地显示(128×64 点阵 OLED 液晶屏)及相序检测功能,可显示三相全电压、电压基波、3次、5次、7次谐波有效值、系统频率值及三相电压相位差;便于现场测试人员快速检查电压采集器与PT二次电压输出端子连接情况及三相电压各项参数。
- 2.10 电压采集器采用双重全数字隔离技术,更加安全可靠。
- 2.11 交直流两用: 内置锂电池供电或者 220V 交流充电器供电自适应。
- 2.12 仪器主机和电压采集器内置大容量可充电锂电池,一次充电完成,可持续工作8小时。
- 2.13 智能电量管理:剩余电量显示、低电量报警、长时间闲置提示、背光自动调节。
- 2.14 内置实时时钟,可实时显示当前时间和日期;自动记录测试日期及时间。
- 2.15 测试数据存储方式分为本机存储和优盘存储,本机存储可存储测试数据100条,并且本

4

地址: 武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669

邮箱: whhezi@163.com

机存储可转存至优盘;优盘存储可保存测试数据及波形图片,测试数据为TXT格式,波 形图片为 BMP 格式,可直接在电脑上编辑打印。

2.16 内置热敏打印机,可打印测试数据及已保存测试记录;打印内容可选择,从而可以节省 打印纸的用量。

3 技术指标

3.1 参考电压测量

3.1.1 参考电压输入范围:	25V~250V 有效值,	50Hz/60Hz

- 3.1.2 参考电压测量准确度: ± (读数×5%+0.5V)
- 3.1.3 电压谐波测量准确度: ± (读数×10%)
- 3.1.4 参考电压通道输入电阻: ≥1500kΩ

3.2 电流测量

3.2.1	全电流测量范围:	0~20mA 有效值, 50Hz/60Hz
3.2.2	准确度:	±(读数×5%+5uA)
3.2.3	阻性电流基波测量准确度:	± (读数×5%+5uA)
3.2.4	电流谐波测量准确度:	±(读数×10%+10uA)
3.2.5	电流通道输入电阻:	$\leq 2 \Omega$

3.3 电场强度测量

3.3.1 电场强度输入范围: 30kV/m~300kV/m
3.3.2 电场强度测量准确度: ±(读数×10%)
3.3.3 电场谐波测量准确度: ±(读数×10%)

3.4 使用条件及外形

 3.4.1 工作电源:
 內置锂电池或外置充电器,充电器输入 100-240VAC, 50Hz/60Hz

 地址:
 武汉市东西湖区吴北路 225 号孚特工业园
 全国统一服务热线: 027-83267669

 网址:
 www.whhezi.com
 5
 邮箱: whhezi@163.com

Ic1p

Ix1p

Ir1p

►U1

服务宗旨: 快速响应, 达到满意, 超过期望

3.4.2	充电时间:	约4小时
3.4.3	电池工作时间:	主机 8 小时, 电压采集器 8 小时
3.4.4	主机尺寸:	320mm(长)×270mm(宽)×150mm(高)
3.4.5	主机重量:	3.2kg(不含线缆)
3.4.6	电压采集器尺寸:	115mm(长)×120mm(宽)×65mm(高)
3.4.7	电压采集器重量:	0.6kg(不含线缆)
3.4.8	使用温度:	$-10^{\circ}\mathrm{C}\sim50^{\circ}\mathrm{C}$
3.4.9	相对湿度:	<90%,不结露

4 测量及补偿原理

4.1 测量原理

本仪器采用如图1所示的投影法计算基波及各次谐波的阻性电流。

- 图中: U1 基波参考电压
 - Ix1p 基波全电流峰值
 - Irlp 基波阻性电流峰值
 - Iclp 基波容性电流峰值
 - Φ 基波全电流超前基波参考电压的角度

计算公式: Ir1p = Ix1p • CosΦ

 $Ic1p = Ix1p \cdot Sin\Phi$

氧化锌避雷器全电流既含有氧化锌避雷器非线性产生的高次谐波,也含有母线电压谐波 产生的高次谐波。与 Irp 相比 Ir1p 更加稳定真实;因此建议用 Ir1p 作为阻性电流指标,Φ 和 Ir1p 均能直观衡量氧化锌避雷器的性能。

4.2 相间干扰及自动补偿原理

图2 相间干扰

地址:武汉市东西湖区吴北路 225 号孚特工业园

网址: <u>www.whhezi.com</u>

全国统一服务热线: 027-83267669 邮箱: whhezi@163.com

图1 投影法

产品宗旨:技术领先,质量可靠,轻便易用 服务宗旨:快速响应,达到满意,超过期望

在现场三相同时测试一字排列的氧化锌避雷器时,如图2所示,由于杂散电容的存在,A、 C相电流相位都要向B相偏移,一般偏移角度为2°~4°左右;这将使A相Φ减小,阻性电 流增大,C相Φ增大,阻性电流减小甚至为负,这种现象称相间干扰。

解决这一问题的方法是采用自动补偿算法,即仪器内置的"自动边补"功能。假设 Ia、 Ic 无干扰时相位相差为 120°,假设 B 相对 A、C 相干扰是相同的;测量出 Ic 超前 Ia 的角度 Φca,A 相补偿Φ0a=(Φca-120°)/2,C 相补偿Φ0c=-(Φca-120°)/2。这种方法实 际上对 A、C 相阻性电流进行了平均,极有可能掩盖存在的问题。因此建议考核没有进行自动 补偿的原始数据(即补偿角度为 0°),并考核其变化趋势。

5 面板及各部件功能介绍

5.1 主机面板

主机面板布置图如图 3 所示。

- 5.1.1 电流输入:分为A相(黄色)、B相(绿色)、C相(红色)三个输入通道,单相测量时,无论测试A相、B相或者C相电流,都从A相通道输入。
- 5.1.2 参考信号输入:有线测试方式时,使用专用通讯电缆,用于连接电压采集器;感应测 试方式时,用于连接感应板,输入感应电场信号。

图 3 主机面板

地址:武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669 邮箱: whhezi@163.com

- 5.1.3 液晶屏:工业级 320×240 点阵单色液晶屏,带 LED 背光,显示操作菜单、测试数据、 波形等。
- 5.1.4 按键:操作仪器用。"↑↓"为"上下"键,选择移动或修改数据; "↔→"为"左右"键,选择移动或修改数据; "确认"键,确认当前操作; "取消"键,放弃当前操作。
- 5.1.5 天线: 在使用无线测试方式时,请将配套天线安装在天线座上,以便于良好的接收无 线信号,不安装天线将大大缩短无线通讯距离。
- 5.1.6 优盘接口:外接优盘用,用来存储测试数据,请使用 FAT 或 FAT32 格式的 U 盘。在存储过程中,严禁拨出优盘。
- 5.1.7 打印机:打印测试结果,打印内容可选择,不关心的数据无需打印,从而节约打印用 纸。
- 5.1.8 接地柱:在测试过程中,仪器必须可靠接地。在连接其它测试线之前应先连接接地线; 在测试结束后,最后拆除接地线,以保证人身安全。
- 5.1.9 充电口: 仪器充电器接口, 请使用仪器配套专用充电器。
- 5.1.10 开关: 仪器电源开关,在不使用仪器时,请及时关闭仪器电源,以节省电池电量。
- 5.2 电压采集器前后面板

电压采集器前后面板如图 4、5 所示;注意:电压输入黑线与接地端子已由内部电路短接,测试时,电压输入黑线必须接地!

5.2.1 通讯接口: 有线测试方式时, 使用专用通讯电缆, 用于连接仪器主机参考信号输入。

5.2.2 天线:在使用无线测试方式时,请将配套天线安装在天线座上,以便于电压采集器有效的发射无线信号;不安装天线将大大缩短无线通讯距离,时间过长有可能烧毁内部无线模块。

图 4 电压采集器前面板

地址: 武汉市东西湖区吴北路 225 号孚特工业园 网址: www.whhezi.com

图 5 电压采集器后面板

全国统一服务热线: 027-83267669 邮箱: whhezi@163.com

5.2.3 按键:操作仪器用。"↑↓"为"上下"键,选择移动或修改数据:"→"为"右" 键, 选择移动或确认操作: 长按"→"键, 进入设置菜单界面。

5.2.4 液晶屏:工业级 128×64 点阵 OLED 液晶屏,显示操作菜单、测试数据。

5.2.5 发送指示灯: 电压采集器通过无线方式或者有线方式, 每发送一次数据指示灯闪烁一 次。

5.2.6 充电口: 仪器充电器接口,请使用仪器配套专用充电器。

5.2.7 开关: 电压采集器电源开关,在不使用时,请及时关闭电源,以节省电池电量。

5.2.8 电压输入:参考电压输入,分为A相(黄色线)、B相(绿色线)、C相(红色线)、

中性点或地线(黑色线):选择参考相别为单相,目无论是A相、B相、C 相、AB相、CB相都从A相(黄色线)和黑色线输入。

注意:如果 PT 二次侧是 B 相接地的, A 相(黄色线) 接 PT 二次侧 A 相, 黑 色线接地, 仪器主机参考相别选择"A-B"; 或者 A 相(黄色线) 接 PT 二 次侧 C 相,黑色线接地,仪器主机参考相别选择"C-B"。

输入线中串接了 120mA 自恢复保险。

5.2.9 接地柱: 在测试过程中, 仪器必须可靠接地。在连接其它测试线之前应先连接接地线; 在测试结束后,最后拆除接地线,以保证人身安全。

6操作使用说明

在进行测试前,仪器主机及电压采集器外壳应可靠接地,根据不同的测试方式进行正确 的接线,各种测试方式下的接线说明请参照"7测试接线"。当使用无线测试方式时,电压 采集器尽量放置在比较高的位置(例如: PT 端子箱上面),可增加无线通讯距离。

6.1 智能电量管理

仪器在长时间未操作时,将自动关闭液晶背光,以节省电量,并显示提示窗口及发出提 示音提示用户关闭仪器电源: 仪器带低电量提示功能: 仪器电量低时可插充电器进行充电, 并可在充电过程中对仪器进行正常操作使用。

6.2 打印机使用说明

服务宗旨:快速响应,达到满意,超过期望

示灯闪烁。按一次按键,打印机走纸。当打印出的打印纸带有粉红边时,表示打印纸即将用 完,请及时更换打印纸。

打印机自检: 在仪器电源关闭的情况下按住按键不放,同时给仪器上电,即打印出自检 条。

打印机换纸:扣出旋转扳手,打开纸仓盖;把打印纸装入,并拉出一截(超出一点撕纸牙齿),注意把纸放整齐,纸的方向为有药液一面(光滑面)向上;合上纸仓盖, 打印头走纸轴压齐打印纸后稍用力把打印头走纸轴压回打印头,并把旋转 扳手推入复位。

6.3 主机操作说明

打开仪器主机电源开关,仪器初始化后进入开机屏幕(见图 6),显示仪器型号、软件版

氧化锌避雷器带电测试仪	2016/04/27 Ξ 10:39:03 ↔ 🔂 📶 💷
欢迎使用	氧化锌避雷器带电测试仪 开始带电测试 测试记录查询 实时时钟设置 系统参数设置
SV:1.01 HV:1.01	SV:1.01 HV:1.01
本号、硬件版本号和仪器编	号; 随后自动进入"主菜单"。
图 6 开机屏幕	图7 主菜单

6.3.1 主菜单

"主菜单"屏幕见图 7 所示。顶部状态栏显示当前日期、时间、优盘插入状态、测试方 式(及相应附加信息)和仪器主机电池电量;底部显示软件版本号、硬件版本号和装置编号; 中间为仪器型号名称以及可选的功能菜单。

按上下键选择相应的功能菜单,按"确认"键进入所选功能菜单;"系统参数设置"菜 单为厂内调试用,不对用户开放。

● □□□□ 无线测试方式,显示电压采集器电池电量及接收到的无线信号强度;电池电量低时,
 地址:武汉市东西湖区吴北路 225 号孚特工业园
 △ 四箱: whhezi.com
 10
 10
 四箱: whhezi@163.com

电池符号闪烁;接收不到无线信号时,无线信号强度显示"?"号,并发出"滴··滴··滴 ··"报警音。

- □到有线测试方式,显示电压采集器电池电量及有线连接状态;电池电量低时,电池符号 闪烁;连接成功显示上下箭头标志,连接失败显示"?"号,并发出"滴··滴··"报 警音。
- ■ 感应测试方式,不显示电压采集器相关状态。
- ← 显示此图标表示优盘已插入且初始化成功。

6.3.2 测试参数设置

在"主菜单"屏幕中选择"开始带电测试"按"确认"进入"测试参数设置"屏幕,见 图 8。

按上下键选择设置项目,按"确认"或右键进入具体数值设置;当光标在具体数值位置 时,按上下键调整数值,按"确认"键或左键返回项目选择。

右侧的提示窗口显示相应设置项的操作说明及重要提示。

2016/04/2	22 五 13:1	1:07	÷	🛾 T.II	
开始带电流	测试 > 测i	式参数	设置		
试验编号	000000		<说日	仴>	
设备名称	000000	请按要	家接纳	仔测症 西测症	t线, F.
测试方式	无线 0	3X MH M	(WE/12	а (X) ы	40
参考相别	ABC				
被测相别	ABC				
补偿方式	禁用补偿		开始》	则试	
补偿角度	фа: 0.00)° фЬ:	0.00°	фс:	0.00°
PT变比	自定义值	1.000			

图 8 测试参数设置

- 试验编号: 设置当前的试验编号。
- 设备名称:即被测设备的编号,可以不设置。
- 测试方式:测试方式可选择有线、无线两种种测试方式;当选择无线测试方式时,"无线"
 二字右边的数字表示当前无线模块使用的频道数值。
- 参考相别:可设置为ABC、A、B、C、A-B、C-B;选择感应测试方式时,固定为B相。 ABC 表示同时使用三相电压作为参考电压。

A、B、C 表示使用单相电压作为参考电压。

地址:武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669

网址: www.whhezi.com

A-B、C-B表示针对 PT 的 B 相接地的情况,使用 A 对 B 或 C 对 B 作为参考电压。
除 ABC 方式外,其它方式下参考电压都由电压采集器 A 相(黄线)通道输入。
● I-U 角差:选择无 PT 测试方式时,不显示"参考相别"而是显示"I-U 角差"。此项用 于设置人为固定的电流、电压信号的相位差;需设置为更为接近实际相位差的

数值,才能测量得到更接近实际值的测试数据。

● 被测相别:可设置为ABC、A、B、C

ABC 表示三相同时测量,在 ABC (黄、绿、红)三相电流通道同时输入三相电流。

A、B、C 表示单相测量,都是用 A 相(黄)电流通道输入电流。

● 补偿方式:可设置为"禁用补偿"、"手动补偿"、"自动边补"三种模式。

"禁用补偿":即补偿角度为0°。当参考相为单相,且被测相别与参考相不同时,仪器自动设置理论补偿角度,如下表所示。

1	被测相 A	被测相 B	被测相 C
参考相 ABC	0°	0°	0°
参考相 A	0°	120°	240°
参考相 B	240°	0°	120°
参考相 C	120°	240°	0°
参考相 A-B	30°	150°	270°
参 考 相 C-B	90°	210°	330°

"手动补偿":手动设置 A、B、C 三相的补偿角度,设置范围在±360.00°之间。注意:设置的补偿角度一定要有依据,不可随意设置!

"自动边补":根据"4.2相间干扰及自动补偿原理"所述原理,自动进行补偿。

注:补偿的角度总是被加到电流与电压的相位差中;例如:电流电压相位差 80°,补偿角度1°,则经补偿后最终电流电压夹角为81°。

● 补偿角度: 在此处可以查看或者设置 A、B、C 三相的补偿角度; 单相测量时, 只显示被测相别的补偿角度。

地址:武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669

网址: <u>www.whhezi.com</u>

邮箱: whhezi@163.com

PT变比:在有线、无线测试方式下设置PT电压变比值,感应测试方式此变比值无效。 PT变比有两种设置模式,分为"自定义值"和"预置变比";"自定义值"模式可随意设置变比值;"预置变比"模式通过选择PT一次额定电压和PT二次额定电压来自动计算PT变比值。

开始测试:参数设置完毕后,光标移动至此,按"确认"键将启动测试过程并进入测试数据显示屏幕;另外,仪器将自动保存此次参数设置,以便于下次使用。

6.3	. 3	测试数据显示屏幕
-----	-----	----------

2016	S/04/22 ∄	14:50:54	1 + 🛟 🚺	≨ t > • • • • •
参数	A 相	B 相	C 相	49.99Hz
Ux	57.69V	57.69V	57.70V	120.00°
Ιx	4.978mA	4.943mA	4.981mA	ΦΒ-c: 120.00°
Ir1p	0.612mA	1.098mA	1.460mA	Φc-a: 119.99°
P 1	24.88mW	44.63mW	59.38mW	暂停
φ	84.99°	80.96°	77.98°	显示
Ir	$\frac{A}{V} \frac{A}{V}$	4A	$\frac{\mathcal{A}}{\mathcal{V}} \mathcal{A}_{\mathcal{V}}$	
结论	优	良	中	

图 9 主要测试数据屏幕

图 11 谐波测试数据屏幕

2016	5/04/22 五	14:57:26	• 🚓 👔	ŞÎ II ∎ IIII
参数	A 相	B 相	C 相	49.99Hz
Ux	57.69V	57.69V	57.70V	Фа-ь:
U3	4.994%	4.983%	4.984%	120.00°
U5	4.985%	4.956%	4.953%	ФЬ-с:
υ7	4.972%	4.912%	4.906%	120.00°
Ιx	4.979mA	4.943mA	4.980mA	¢c−a:
Ixp	6.727mA	6.990mA	6.728mA	119.999
Ιr	0.464mA	0.771mA	1.085mA	जात दिन
Irp	1.004mA	1.090mA	2.288mA	201 114
Ir1p	0.612mA	1.091mA	1.453mA	見一元
Ic1p	6.988mA	6.906mA	6.864mA	
Ir3p	0.080mA	0.000mA	0.196mA	保存
Ir5p	0.131mA	0.000mA	0.293mA	LAN 11
Ir7p	0.179mA	0.000mA	0.344mA	T ED
P1	24.88mW	44.35mW	59.07mW	12 - 12
Сх	273.6nF	270.4nF	268.7nF	
φ	84.99°	81.02°	78.04°	

图 10 详细测试数据屏幕

2010	6/04/22 ∄	i 14:58:24	4 🔶 🗎	ŝt II i III I
参数	A 相	B 相	C 相	49.99Hz
U1	57.48V	57.47V	57.49V	Фа-ь:
U3	2.870V	2.864V	2.865V	120.00°
U5	2.866V	2.849V	2.848V	¢b−c:
U7	2.858V	2.823V	2.820V	120.00°
I 1	4.960mA	4.943mA	4.961mA	¢c−a:
IЗ	0.248mA	0.000mA	0.248mA	119.99°
I 5	0.247mA	0.000mA	0.248mA	जिल्ला दिनी
I 7	0.248mA	0.000mA	0.247mA	244 195
ΦU1	0.00°	239.99°	119.99°	見テ
ФИЗ	359.39°	359.40°	359.37°	26 2121
ΦU5	358.94°	118.98°	238.93°	保存
ΦU7	358.49°	238.63°	118.56°	(MA 11
φI1	84.99°	321.01°	198.04°	T ED
фIЗ	256.17°	300.69°	235.28°	11 -1-
φI5	66.90°	351.53°	272.03°	
φI7	237.65°	139.47°	308.82°	

图 12 波形测试数据屏幕

测试数据显示屏幕分为: 主要测试数据、详细测试数据、谐波测试数据、波形测试数据 和参数设置查看五个屏幕,光标移动到"显示"按"确定"键进行切换; 单相测量时,没有 单独的波形测试数据显示屏幕,波形测试数据将显示在所有测试数据屏幕中。

这里的参数设置查看屏幕,主要是用于查看进行此次测试时的参数设置情况,不可进行

地址: 武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669

网址: www.whhezi.com

邮箱: whhezi@163.com

修改,如需修改参数设置请返回"测试参数设置"屏幕进行修改。

主要测试数据屏幕见图 9 所示;详细测试数据屏幕见图 10 所示;谐波测试数据屏幕见图 11 所示;波形测试数据屏幕见图 12 所示;参数设置查看屏幕见图 13 所示。

2016/04/22 五 15:13:18 🕰	₩
测试参数	
试验编号:000000 补偿角度:	系统频率
设备名称:000000 Фа: 0.00)° 49.99Hz
测试方式:有线	
参考相别:A	测试
被测相别:A	显示
补偿方式:禁用补偿	保存
PT 变比:1.000	打印
2016年04月22日 15时10分29秒	

图 13 参数设置查看屏幕

● ▶ 测试过程中显示此符号,且闪烁。

● Ⅲ 暂停测试时显示此符号,且闪烁。

点击"测试"按钮进入测试状态;点击"暂停"进入暂停状态;测试状态只能切换显示屏 幕不能进行数据保存、打印、上传等操作;暂停状态下,将显示"保存"、"打印"、"上 传"按钮,可以进行保存、打印、上传等操作。

6.3.4 测试数据说明

- 系统频率: 屏幕右上角显示仪器采集到的系统频率值。
- 三相电压夹角: 三相同时测量时,显示三相电压夹角Φa-b、Φb-c、Φc-a; 单相测量时, 不显示。
- Ux: 参考电压有效值, 仅包含基波和 3、5、7 次谐波, 计算公式为:

$Ux = \sqrt{U1^2 + U3^2 + U5^2 + U7^2}$

当使用感应测试方式时,显示 Ex 表示电场感应强度,单位 KV/m; 计算公式同上; 在 详细测试数据显示屏幕及谐波测试数据显示屏幕,单位将简略显示为 K/m。

- U1: 基波电压有效值; 使用感应测试方式时,显示 E1 表示基波电场感应强度。
- U3、U5、U7: 3、5、7次谐波电压有效值及其占基波电压的相对含量;使用感应测试方式

地址:武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669

服务宗旨: 快速响应, 达到满意, 超过期望

时,显示为E3、E5、E7。

- Ix: 全电流有效值, 仅包含基波和 3、5、7 次谐波。
- Ixp: 全电流峰值,即 Ix 的峰值。
- Ir: 阻性电流有效值, 仅包含基波和 3、5、7 次谐波阻性电流。
- Irp: 阻性电流峰值,即 Ir 的峰值。
- Ir1p: 基波阻性电流峰值。
- Ic1p: 基波容性电流峰值。
- Ir3p、Ir5p、Ir7p: 3、5、7 次谐波阻性电流峰值。
 - 注意:基波电流超前基波电压的角度Φ超过 90°时, Irlp 为负值;超过 180°时, Iclp 也为负值。如果 Ix 波形是平顶的, Iclp 可大于 Ixp。
- P1: 基波功耗,即基波阻性电流有效值与基波电压有效值的乘积。
- Cx: 氧化锌避雷器电容量, 计算公式为:

$$Cx = \frac{Ic1}{c}$$

2πfU1

式中: Ic1 基波容性电流有效值

- f 系统频率
- U1 基波电压有效值

使用感应测试方式时,仪器内假定 U1=1000V,电容量单位简略显示为 uK(uFKV)、nK(nFKV); 此值除以系统实际电压值(单位: KV),便可得到运行电压下氧化锌避雷器的实际电容量。 Φ:基波电流超前基波电压的角度,其中已经包含了补偿角度。仪器根据Φ给出结论的判断依据如下表:

结论	劣	差	中	良	优	有干扰
Φ	0∼74.99°	75~76.99°	77~79.99°	80~82.99°	83~87.99°	≥88°

注:本仪器具有波形自动放大功能,因此波形幅度并不能代表相应数据值的大小。

地址: 武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669 邮箱: whhezi@163.com

2016/04/25 — 09:56:35 🚓 🎯 🏭

实时时钟设置

2016年04月25日

星期一

09时55分56秒

网址: <u>www.whhezi.com</u>

6.3.5 测试记录查询

图 14 测试记录查询

图 15 实时时钟设置

测试记录查询屏幕见图 14 所示。此屏幕可以查看保存在本机的所有测试记录,及所有测 试数据、波形及其相应的参数设置;并可对已保存的测试记录进行转存至优盘、打印等操作。 "001/003"前面的数字表示当前查看的测试记录的保存编号,后面的数字表示已保存的测试 记录数量,本仪器最多可以保存 100 条测试记录;按"←→"键切换要查看的测试记录。

6.3.6 实时时钟设置

实时时钟设置屏幕见图 15 所示。用于设置仪器自带的时钟;按"↑↓"键调整数值,按 "←→"键移动光标,按"确认"键保存设置,按"取消"放弃设置。

6.4 电压采集器操作说明

打开电压采集器电源开关,电压采集器初始化后进入开机屏幕(见图16),显示电压采 集器软件版本号、硬件版本号和仪器编号;随后自动进入"测试数据"屏幕。

图 16 开机屏幕

Fa: 50. 00Hz $Uxa:60.00\overline{V}$ Uxb:60.00V Uxc:60.00V

图 17 测试数据屏幕

6.4.1 测试数据显示屏幕

测试数据显示屏幕见图 17 所示。在此屏幕中显示:

- 电压采集器电池电量。
- 通过 A 相测量的系统频率。
- 三相参考电压有效值,基波、3次、5次、7次谐波电压有效值。

地址:武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669

邮箱: whhezi@163.com

网址: <u>www.whhezi.com</u>

● 三相基波电压相位差。

按"↑↓"键可切换显示内容;电压采集器具备相序错误报警功能,在参考电压为三相 (同时采集三相电压)时,如果三相相序不是正相序,则会显示报警信息并发出报警音。

如果电压采集器开机后没有进行电压测量(电压小于 1V),在一段时间后,电压采集器 会发出提示音和提示信息,提示用户关机,如果进行测量,则不会发出提示音和提示信息。

6.4.2 主菜单及无线频道设置

在测试数据显示屏幕下,长按"→"键进入"主菜单"屏幕,"主菜单"屏幕包含"1. 无线频道设置"和"2.系统参数设置"两个选项,通过"↑↓"键选择,按"→"键确认; "2.系统参数设置"为厂内调试用,不对用户开放。

选择"1.无线频道设置"选项并确认后,会进入"密码输入"屏幕,按"→"键移动光标;光标在密码位置时,按"↑↓"键修改密码值;光标在"确定"或"取消"位置时,按"↑↓"键相当于"确认键"。无线频道设置菜单密码为"8888888"。

无线频道数值不能随意修改,频道值必须与仪器主机相同。当遇到同频干扰需要修改无 线通讯频道时,设置好电压采集器无线频道后,在测试数据显示屏幕下,按"→"键将电压 采集器发送模式改为有线模式;用有线通讯电缆连接电压采集器和仪器主机,仪器主机设置 为有线测试方式,当通讯成功后,仪器主机的无线通讯频道会自动设置为与电压采集器一致 的频道值。之后便可改为无线测试方式进行测试操作。

7 测试接线

7.1 注意事项

7.1.1 仪器主机及电压采集器在测试前必须可靠接地。

- 7.1.2 电流采样,单相测试时,从仪器主机A相(黄色)通道输入;三相测试时,从A、B、C相(黄色、绿色、红色)通道分别输入;且仪器只能用于低压小电流信号采样,所以测试线应远离高压。
 - 提示:从氧化锌避雷器计数器取电流,当测试夹连接良好时,计数器电流表指针归零; 电流表指针不归零,表示测试夹没有接好,此时用测试夹在连接部位摩擦几下 使电流表指针归零即可。

地址: 武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669

邮箱: whhezi@163.com

网址: <u>www.whhezi.com</u>

7.1.3 参考电压采样,单相测试时,从电压采集器 A 相(黄色)通道输入;三相测试时,从 A、
 B、C 相(黄色、绿色、红色)通道分别输入;电压测试线上串联有 120mA 自恢复保险,以防止测试线短路造成 PT 二次侧短路。

- 7.1.4 感应测试方式,感应板必须放在 B 相氧化锌避雷器底座上,从仪器主机参考信号通道 输入;且感应板必须垂直于 B 相氧化锌避雷器放置。
- 7.1.5 无线测试方式,电压采集器应尽量放置在相对较高的位置(例如: PT 端子箱上面), 这样可以增加无线发射、接收距离;当无线信号较弱时,可适当调整天线方向,以增 强无线信号强度;特殊情况下可使用带延长线的吸盘天线来改善无线信号质量。
- 7.2 有线测试方式接线说明

有线测试方式需要使用通讯电缆将仪器主机和电压采集器连接起来,通过有线方式进行

数据传输和同步,接线示意图见图 18 所示。

图 18 有线测试方式接线示意图 (三相同时测量)

接线时,电流和电压相序一定要按照正确相序连接。仪器主机设置为有线测试方式,电 压采集器设置为有线发送方式。

网址: www.whhezi.com

7.3 无线测试方式接线说明

无线测试方式仪器主机和电压采集器通过无线通讯进行数据传输和同步,接线示意图见

图 19 无线测试方式接线示意图 (三相同时测量)

7.4 感应测试方式接线说明

感应测试方式不需要电压采集器, 仪器主机完成电流采样和感应电场采样。感应板应放 置在 B 相避雷器底座上, 放置位置应与 A、C 相避雷器对称,并且感应板与 B 相避雷器垂直; 接线示意图见图 20 所示。

图 20 感应测试方式接线示意图 (三相同时测量)

地址:武汉市东西湖区吴北路 225 号孚特工业园

网址: <u>www.whhezi.com</u>

全国统一服务热线: 027-83267669 邮箱: whhezi@163.com

8 售后服务

8.1 凡购本公司产品随机携带产品保修单,订购产品交货时,请当场检验并填好保修单。

8.2 自购机之日起,在保修期内,维修不收取维修费;保修期外,维修调试收取适当费用。

8.3 电池属消耗品,不在保修范围内。

8.4 属下列情况之一者不予保修:

8.4.1 用户对仪器有自行拆卸或对仪器工艺结构有人为改变。

8.4.2 因用户保管或使用不当造成仪器的严重损坏。

8.4.3 属于用户其它原因造成的损坏。

售后服务和质量承诺书

为了更好的服务用户,做好及时的使用指导和售后服务,武汉赫兹电力设备有限公司以 "技术领先、质量可靠、轻便易用"为产品宗旨和"快速响应、达到满意、超过期望"为服 务宗旨,保证用户在购买、使用、维护产品的每一个过程中都有非常完美的客户体验。

一、产品质量承诺:

1、产品的制造和检测均符合国家标准及行业标准。

2、我公司所提供的产品在质保期内如果存在质量问题,我公司保证全力解决,达到用户满 意。

二、产品的质保:

自整机收到货后壹个月内包退,叁个月内包换,并提供壹年免费维修,终身维护服务。 在仪器的使用年限内,本公司将长期提供仪器的维护、使用培训、软件升级、配件供应等相 关服务。

三、售后服务能力:

- 在设备的设计使用寿命期内,我公司承诺保证设备的正常使用。壹年内出现故障免费保修, 超过壹年或因用户使用不当造成损坏,仍免费提供技术服务,如需更换零部件,仅收取 材料成本费。
- 2. 仪器在质保期内如出现故障,请及时与本公司联系,我们将根据情况采取下列措施之一为 您服务:□返厂维修□上门维修□更换新仪器□提供应急备品
- 四、服务管理制度及体系:
- 1、售前服务: 免费向用户提供技术资料,安排客户对我公司进行考察。

地址: 武汉市东西湖区吴北路 225 号孚特工业园

全国统一服务热线: 027-83267669 邮箱: whhezi@163.com

网址: <u>www.whhezi.com</u>

2、售中服务:为防止用户选型不当而造成不必要的损失,我公司为用户提供专业的技术选型和指导。在发货前公司会拍摄专业的产品操作视频进行指导,确保正确使用该产品,同时也可以通过电话、视频进行技术交流,让用户用得安心。

3、售后服务: 我公司在 2 小时内响应维护服务, 24 小时技术支持,可以通过电话、视频进行指导,为更好的做产品售后服务工作,及时接收用户反馈的问题,公司设有专门的售后服务电话: 027-83267669,有专业人员接听并及时做好反馈记录,并提供解决问题的办法。如有需要到现场指导的,公司会根据客户实际情况(本省之内)24 小时内到达现场处理,外地(外省)48 小时到达现场处理,安排相关专业人员到指定地点进行及时指导。除此之外,我公司将定期回访客户的使用情况,提供专业的技术支持,做好回访记录。

4、售后服务申明:本公司所提供的技术支持服务均为免费服务。

地址: 武汉市东西湖区吴北路 225 号孚特工业园

网址: www.whhezi.com

全国统一服务热线: 027-83267669 邮箱: whhezi@163.com